Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Ann Diagn Pathol ; 70: 152293, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38484479

RESUMO

Monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL) is a rare and aggressive T-cell neoplasm associated with poor survival. We report a case of MEITL that presented as an ulcerated mass in the jejunum with perforation. Microscopic examination showed that the neoplasm involved the full thickness of the intestinal wall, extended into the mesentery, and was composed of monomorphic, small to medium-size cells. Immunohistochemical analysis showed that the neoplastic cells were positive for T-cell receptor (TCR) delta, CD3, CD7, CD8 (small subset), BCL-2 and TIA-1, and negative for TCR beta, CD4, CD5, CD10, CD20, CD30, CD34, CD56, CD57, CD99, ALK, cyclin D1, granzyme B, MUM1/IRF4, and TdT. The Ki-67 proliferation index was approximately 50 %. In situ hybridization for Epstein-Barr virus-encoded RNA (EBER ISH) was negative. Next-generation sequencing (NGS) analysis showed mutations involving SETD2 and STAT5B. The patient was treated with aggressive chemotherapy and consolidative autologous stem cell transplant and had clinical remission, but relapsed after about one year. Retreatment led to another one-year interval of clinical remission, but at last follow up the patient has relapsed disease involving the ileum and colon. We also discuss the differential diagnosis of MEITL.


Assuntos
Imunofenotipagem , Humanos , Diagnóstico Diferencial , Imunofenotipagem/métodos , Masculino , Linfoma de Células T/diagnóstico , Linfoma de Células T/patologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Neoplasias Intestinais/diagnóstico , Neoplasias Intestinais/patologia , Pessoa de Meia-Idade
2.
Eur J Med Res ; 29(1): 191, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520011

RESUMO

BACKGROUND: Small intestinal monomorphic-epitheliotropic intestinal T-cell lymphoma (MEITL) is a rare aggressive T-cell lymphoma originating in the gastrointestinal tract. This study aimed to investigate the clinicopathological features, immunophenotypes, and molecular genetic changes of MEITL. METHODS: The clinicopathological data for three patients with surgically resected MEITL of the small intestine were collected. Next, immunohistochemical labeling, Epstein-Barr virus (EBV) in situ hybridization, assessment of clonal rearrangement of T-cell receptor (TCR) genes, and next-generation sequencing (NGS) were performed. RESULTS: Of the three patients, two were male and one was female, with ages of 61, 67, and 73 years, respectively. Clinical manifestations were predominantly abdominal pain and distension. Histopathology revealed infiltrative growth of small-to-medium-sized lymphocytes with a consistent morphology between the intestinal walls, accompanied by an obvious pro-epithelial phenomenon. The expression of CD3, CD8, CD43, CD56, TIA-1, CD103, H3K36me3, and Bcl-2 was detected, and the Ki-67 proliferation index ranged from 50% to 80%. All three patients tested negative for EBER. However, monoclonal rearrangement of the TCR gene was detected in them. NGS testing showed a JAK3 mutation in all three cases. Further, STAT5B, SETD2, and TP53 mutations were each observed in two cases, and a BCOR mutation was found in one case. All patients were treated with chemotherapy after surgery. Two patients died 7 and 15 month post-operation, and one patient survived for 5 months of follow-up. CONCLUSIONS: Our findings demonstrate that mutations in JAK3 and STAT5B of the JAK/STAT pathway and inactivation of the oncogene SETD2 markedly contribute to the lymphomagenesis of MEITL.


Assuntos
Linfoma de Células T Associado a Enteropatia , Infecções por Vírus Epstein-Barr , Linfoma de Células T , Humanos , Masculino , Feminino , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Janus Quinases , Transdução de Sinais , Herpesvirus Humano 4/genética , Fatores de Transcrição STAT , Linfoma de Células T Associado a Enteropatia/genética , Linfoma de Células T Associado a Enteropatia/complicações , Linfoma de Células T/genética , Linfoma de Células T/complicações , Linfoma de Células T/patologia , Intestino Delgado/patologia , Mutação/genética , Biologia Molecular
3.
J Endocr Soc ; 8(3): bvae015, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38370444

RESUMO

Growth hormone (GH) modifies liver gene transcription in a sexually dimorphic manner to meet liver metabolic demands related to sex; thus, GH dysregulation leads to sex-biased hepatic disease. We dissected the steps of the GH regulatory cascade modifying GH-dependent genes involved in metabolism, focusing on the male-predominant genes Lcn13, Asns, and Cyp7b1, and the female-predominant genes Hao2, Pgc1a, Hamp2, Cyp2a4, and Cyp2b9. We explored mRNA expression in 2 settings: (i) intact liver GH receptor (GHR) but altered GH and insulin-like growth factor 1 (IGF1) levels (NeuroDrd2KO, HiGH, aHepIGF1kd, and STAT5bCA mouse lines); and (ii) liver loss of GHR, with or without STAT5b reconstitution (aHepGHRkd, and aHepGHRkd + STAT5bCA). Lcn13 was downregulated in males in most models, while Asns and Cyp7b1 were decreased in males by low GH levels or action, or constant GH levels, but unexpectedly upregulated in both sexes by the loss of liver Igf1 or constitutive Stat5b expression. Hao, Cyp2a4, and Cyp2b9 were generally decreased in female mice with low GH levels or action (NeuroDrd2KO and/or aHepGHRkd mice) and increased in HiGH females, while in contrast, Pgc1a was increased in female NeuroDrd2KO but decreased in STAT5bCA and aHepIGF1kd females. Bioinformatic analysis of RNAseq from aHepGHRkd livers stressed the greater impact of GHR loss on wide gene expression in males and highlighted that GH modifies almost completely different gene signatures in each sex. Concordantly, we show that altering different steps of the GH cascade in the liver modified liver expression of Lcn13, Asns, Cyp7b1, Hao2, Hamp2, Pgc1a, Cyp2a4, and Cyp2b9 in a sex- and gene-specific manner.

4.
Mol Carcinog ; 63(4): 558-562, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38153216

RESUMO

Acute promyelocytic leukemia (APL) with typically PML::RARA fusion gene caused by t (15;17) (q22; q12) was distinguished from other types of acute myeloid leukemia. In a subset of patients with APL, t (15;17) (q22;q21) and PML::RARA fusion cannot be detected. In this report, we identified the coexistence of STAT3::RARA and RARA::STAT5b fusions for the first time in a variant APL patient lacking t (15;17)(q22;q21)/PML::RARA fusion. Then, this patient was resistant to all-trans retinoic acid combined arsenic trioxide chemotherapy. Accurate detection of RARA gene partners is crucial for variant APL, and effective therapeutic regime is urgently needed.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Tretinoína , Fator de Transcrição STAT3/genética
5.
Elife ; 122023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091606

RESUMO

Sex differences in plasma growth hormone (GH) profiles, pulsatile in males and persistent in females, regulate sex differences in hepatic STAT5 activation linked to sex differences in gene expression and liver disease susceptibility, but little is understood about the fundamental underlying, GH pattern-dependent regulatory mechanisms. Here, DNase-I hypersensitivity site (DHS) analysis of liver chromatin accessibility in a cohort of 18 individual male mice established that the endogenous male rhythm of plasma GH pulse-stimulated liver STAT5 activation induces dynamic, repeated cycles of chromatin opening and closing at several thousand liver DHS and comprises a novel mechanism conferring male bias to liver chromatin accessibility. Strikingly, a single physiological replacement dose of GH given to hypophysectomized male mice restored, within 30 min, liver STAT5 activity and chromatin accessibility at 83% of the dynamic, pituitary hormone-dependent male-biased DHS. Sex-dependent transcription factor binding patterns and chromatin state analysis identified key genomic and epigenetic features distinguishing this dynamic, STAT5-driven mechanism of male-biased chromatin opening from a second GH-dependent mechanism operative at static male-biased DHS, which are constitutively open in male liver. Dynamic but not static male-biased DHS adopt a bivalent-like epigenetic state in female liver, as do static female-biased DHS in male liver, albeit using distinct repressive histone marks in each sex, namely, H3K9me3 at male-biased DHS in female liver and H3K27me3 at female-biased DHS in male liver. Moreover, sex-biased H3K36me3 marks are uniquely enriched at static sex-biased DHS, which may serve to keep these sex-dependent hepatocyte enhancers free of H3K27me3 repressive marks and thus constitutively open. Pulsatile chromatin opening stimulated by endogenous, physiological hormone pulses is thus one of two distinct GH-determined mechanisms for establishing widespread sex differences in hepatic chromatin accessibility and epigenetic regulation, both closely linked to sex-biased gene transcription and the sexual dimorphism of liver function.


Assuntos
Cromatina , Hormônio do Crescimento , Humanos , Feminino , Camundongos , Masculino , Animais , Hormônio do Crescimento/metabolismo , Cromatina/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Histonas/metabolismo , Epigênese Genética , Fígado/metabolismo
6.
Toxics ; 11(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38133364

RESUMO

Per- and poly-fluoroalkyl substances (PFAS) are a large class of fluorinated carbon chains that include legacy PFAS, such as perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS). These compounds induce adverse health effects, including hepatotoxicity. Potential alternatives to the legacy PFAS (HFPO-DA (GenX), HFPO4, HFPO-TA, F-53B, 6:2 FTSA, and 6:2 FTCA), as well as a byproduct of PFAS manufacturing (Nafion BP2), are increasingly being found in the environment. The potential hazards of these new alternatives are less well known. To better understand the diversity of molecular targets of the PFAS, we performed a comparative toxicogenomics analysis of the gene expression changes in the livers of mice exposed to these PFAS, and compared these to five activators of PPARα, a common target of many PFAS. Using hierarchical clustering, pathway analysis, and predictive biomarkers, we found that most of the alternative PFAS modulate molecular targets that overlap with legacy PFAS. Only three of the 11 PFAS tested did not appreciably activate PPARα (Nafion BP2, 6:2 FTSA, and 6:2 FTCA). Predictive biomarkers showed that most PFAS (PFHxS, PFOA, PFOS, PFNA, HFPO-TA, F-53B, HFPO4, Nafion BP2) activated CAR. PFNA, PFHxS, PFOA, PFOS, HFPO4, HFPO-TA, F-53B, Nafion BP2, and 6:2 FTSA suppressed STAT5b, activated NRF2, and activated SREBP. There was no apparent relationship between the length of the carbon chain, type of head group, or number of ether linkages and the transcriptomic changes. This work highlights the similarities in molecular targets between the legacy and alternative PFAS.

7.
Cells ; 12(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37998363

RESUMO

Iron homeostasis is considered a key factor in human metabolism, and abrogation in the system could create adverse effects, including cancer. Moreover, 6-gingerol is a widely used bioactive phenolic compound with anticancer activity, and studies on its exact mechanisms on non-small cell lung cancer (NSCLC) cells are still undergoing. This study aimed to find the mechanism of cell death induction by 6-gingerol in NSCLC cells. Western blotting, real-time polymerase chain reaction, and flow cytometry were used for molecular signaling studies, and invasion and tumorsphere formation assay were also used with comet assay for cellular processes. Our results show that 6-gingerol inhibited cancer cell proliferation and induced DNA damage response, cell cycle arrest, and apoptosis in NSCLC cells, and cell death induction was found to be the mitochondrial-dependent intrinsic apoptosis pathway. The role of iron homeostasis in the cell death induction of 6-gingerol was also investigated, and iron metabolism played a vital role in the anticancer ability of 6-gingerol by downregulating EGFR/JAK2/STAT5b signaling or upregulating p53 and downregulating PD-L1 expression. Also, 6-gingerol induced miR-34a and miR-200c expression, which may indicate regulation of PD-L1 expression by 6-gingerol. These results suggest that 6-gingerol could be a candidate drug against NSCLC cells and that 6-gingerol could play a vital role in cancer immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , Ferro
8.
Front Immunol ; 14: 1165306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920458

RESUMO

Introduction: Inhibition of STAT5 was recently reported to reduce murine atherosclerosis. However, the role of STAT5 isoforms, and more in particular STAT5A in macrophages in the context of human atherosclerosis remains unknown. Methods and results: Here, we demonstrate reciprocal expression regulation of STAT5A and STAT5B in human atherosclerotic lesions. The former was highly upregulated in ruptured over stable plaque and correlated with macrophage presence, a finding that was corroborated by the high chromosomal accessibility of STAT5A but not B gene in plaque macrophages. Phosphorylated STAT5 correlated with macrophages confirming its activation status. As macrophage STAT5 is activated by GM-CSF, we studied the effects of its silencing in GM-CSF differentiated human macrophages. STAT5A knockdown blunted the immune response, phagocytosis, cholesterol metabolism, and augmented apoptosis terms on transcriptional levels. These changes could partially be confirmed at functional level, with significant increases in apoptosis and decreases in lipid uptake and IL-6, IL-8, and TNFa cytokine secretion after STAT5A knockdown. Finally, inhibition of general and isoform A specific STAT5 significantly reduced the secretion of TNFa, IL-8 and IL-10 in ex vivo tissue slices of advanced human atherosclerotic plaques. Discussion: In summary, we identify STAT5A as an important determinant of macrophage functions and inflammation in the context of atherosclerosis and show its promise as therapeutic target in human atherosclerotic plaque inflammation.


Assuntos
Aterosclerose , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Animais , Camundongos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Transativadores/genética , Fator de Transcrição STAT5/metabolismo , Interleucina-8/metabolismo , Transdução de Sinais , Macrófagos , Aterosclerose/metabolismo , Inflamação/metabolismo , Proteínas Supressoras de Tumor/metabolismo
9.
Methods Mol Biol ; 2705: 225-238, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37668977

RESUMO

Fluorescence polarization (FP) assays can be used to identify small-molecule inhibitors that bind to SH2 domain-containing proteins. We have developed FP assays by which to identify inhibitors of the SH2 domains of the two closely-related transcription factors STAT5a and STAT5b. Point mutation of selected amino acids in the putative binding site of the protein is a valuable tool by which to gain insight into the molecular mechanism of binding. In this chapter, we describe the cloning and application of point mutant proteins in order to transfer the binding preference of selected SH2 domain-binding STAT5b inhibitors to STAT5a, with results that highlight the importance of considering a role for residues outside the SH2 domain in contributing to the binding interactions of SH2 domain inhibitors.


Assuntos
Aminoácidos , Domínios de Homologia de src , Sítios de Ligação , Proteínas Mutantes , Polarização de Fluorescência
10.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37662275

RESUMO

Sex-differences in plasma growth hormone (GH) profiles, pulsatile in males and persistent in females, regulate sex differences in hepatic STAT5 activation linked to sex differences in gene expression and liver disease susceptibility, but little is understood about the fundamental underlying, GH pattern-dependent regulatory mechanisms. Here, DNase hypersensitivity site (DHS) analysis of liver chromatin accessibility in a cohort of 18 individual male mice established that the endogenous male rhythm of plasma GH pulse-stimulated liver STAT5 activation induces dynamic, repeated cycles of chromatin opening and closing at several thousand liver DHS and comprises a novel mechanism conferring male bias to liver chromatin accessibility. Strikingly, a single physiological replacement dose of GH given to hypophysectomized male mice restored, within 30 min, liver STAT5 activity and chromatin accessibility at 83% of the pituitary hormone-dependent dynamic male-biased DHS. Sex-dependent transcription factor binding patterns and chromatin state analysis identified key genomic and epigenetic features distinguishing this dynamic, STAT5-driven mechanism of male-biased chromatin opening from a second GH-dependent mechanism operative at static male-biased DHS, which are constitutively open in male liver. Dynamic but not static male-biased DHS adopt a bivalent-like epigenetic state in female liver, as do static female-biased DHS in male liver, albeit using distinct repressive histone marks in each sex, namely, H3K27me3 at female-biased DHS in male liver, and H3K9me3 at male-biased DHS in female liver. Moreover, sex-biased H3K36me3 marks are uniquely enriched at static sex-biased DHS, which may serve to keep these sex-dependent hepatocyte enhancers free of H3K27me3 repressive marks and thus constitutively open. Pulsatile chromatin opening stimulated by endogenous, physiological hormone pulses is thus one of two distinct GH-determined mechanisms for establishing widespread sex differences in hepatic chromatin accessibility and epigenetic regulation, both closely linked to sex-biased gene transcription and the sexual dimorphism of liver function.

11.
Int J Biol Sci ; 19(12): 3920-3936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564209

RESUMO

Myxofibrosarcoma is genetically complex without established nonsurgical therapies. In public datasets, PAK1 was recurrently gained with mRNA upregulation. Using myxofibrosarcoma cells, we explored the oncogenic underpinning of PAK1 with genetic manipulation and a pan-PAK inhibitor (PF3758309). Myxofibrosarcoma specimens were analyzed for the levels of PAK1, phospho-PAKT423, CSF2 and microvascular density (MVD) and those of PAK1 gene and mRNA. PAK1-expressing xenografts were assessed for the effects of PF3758309 and CSF2 silencing. Besides pro-proliferative and pro-migrator/pro-invasive attributes, PAK1 strongly enhanced angiogenesis in vitro, which, not phenocopied by PAK2-4, was identified as CSF2-mediated using antibody arrays. PAK1 underwent phosphorylation at tyrosines153,201,285 and threonine423 to facilitate nuclear entry, whereby nuclear PAK1 bound STAT5B to co-transactivate the CSF2 promoter, increasing CSF2 secretion needed for angiogenesis. Angiogenesis driven by PAK1-upregulated CSF2 was negated by CSF2 silencing, anti-CSF2, and PF3758309. Clinically, overexpressed whole-cell phospho-PAKT423, related to PAK1 amplification, was associated with increased grades, stages, and PAK1 mRNA, higher MVD, and CSF2 overexpression. Overexpressed whole-cell phospho-PAKT423 and CSF2 independently portended shorter metastasis-free survival and disease-specific survival, respectively. In vivo, both CSF2 silencing and PF3758309 suppressed PAK1-driven tumor proliferation and angiogenesis. Conclusively, the nuclear entry of overexpressed/activated PAK1 endows myxofibrosarcomas with pro-angiogenic function, highlighting the vulnerable PAK1/STAT5B/CSF2 regulatory axis.


Assuntos
Fibrossarcoma , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Fator de Transcrição STAT5 , Quinases Ativadas por p21 , Humanos , Linhagem Celular Tumoral , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Ativação Transcricional , Animais , Fibrossarcoma/genética , Fibrossarcoma/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo
12.
Horm Res Paediatr ; : 1-8, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37586336

RESUMO

INTRODUCTION: Patients with homozygous recessive mutations in STAT5B have severe progressive postnatal growth failure and insulin-like growth factor-I (IGF-I) deficiency associated with immunodeficiency and increased risk of autoimmune and pulmonary conditions. This report describes the efficacy and safety of recombinant human IGF-1 (rhIGF-1) in treating severe growth failure due to STAT5B deficiency. CASE PRESENTATION: Three siblings (P1, 4.4 year-old female; P2, 2.3 year-old male; and P3, 7 month-old female) with severe short stature (height SDS [HtSDS] -6.5, -4.9, -5.3, respectively) were referred to the Center for Growth Disorders at Cincinnati Children's Hospital Medical Center. All three had a homozygous mutation (p.Trp631*) in STAT5B. Baseline IGF-I was 14.7, 14.1, and 10.8 ng/mL, respectively (all < -2.5 SDS for age and sex), and IGFBP-3 was 796, 603, and 475 ng/mL, respectively (all < -3 SDS for age and sex). The siblings were started on rhIGF-1 at 40 µg/kg/dose twice daily subcutaneously (SQ), gradually increased to 110-120 µg/kg/dose SQ twice daily as tolerated. HtSDS and height velocity (HV) were monitored over time. RESULTS: Six years of growth data was utilized to quantify growth response in the two older siblings and 5 years of data in the youngest. Pre-treatment HVs were, respectively, 3.0 (P1), 3.0 (P2), and 5.2 (P3) cm/year. With rhIGF-1 therapy, HVs increased to 5.2-6.0, 4.8-7.1, and 5.5-7.4 cm/year, respectively, in the first 3 years of treatment, before they decreased to 4.7, 3.8, and 4.3 cm/year, respectively, at a COVID-19 pandemic delayed follow-up visit and with decreased treatment adherence. ΔHtSDS for P1 and P2 was +2.21 and +0.93, respectively, over 6 years, but -0.62 for P3 after 5 years and in the setting of severe local lipohypertrophy and suboptimal weight gain. P3 also experienced hypoglycemia that limited our ability to maintain target rhIGF-1 dosing. CONCLUSION: The response to rhIGF-1 therapy is less than observed with rhIGF-1 therapy for patients previously described with severe primary IGF-I deficiency, including patients with documented defects in the growth hormone receptor, but may still provide patients with STAT5B deficiency with an opportunity to prevent worsening growth failure.

13.
Pathol Res Pract ; 248: 154635, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392551

RESUMO

BACKGROUND: Plasmacytoma Variant Translocation 1 (LncRNA PVT1) and signal transducer and activator of transcription 5B (STAT5B) play important roles in various cancers, but their interaction in bladder cancer (BC) remains unclear. PURPOSE: We aimed to explore the interaction between lncRNA PVT1 and STAT5B in BC tumorigenesis and find potential drugs for BC. METHODS: The association of the expression of lncRNA PVT1 and STAT5B to the prognosis of BC patients was evaluated via bioinformatic analysis. Loss- and gain-of-function assays were performed to determine the biological functions of lncRNA PVT1 and STAT5B. Quantitative real time polymerase chain reaction, Western blot, immunohistochemistry, and immunofluorescence were used to detect lncRNA PVT1 and STAT5B expression. Fluorescence in situ hybridization, RNA pull-down and RNA immunoprecipitation assays were conducted to determine the regulatory effect of lncRNA PVT1 on STAT5B. The transcriptional effect of STAT5B on lncRNA PVT1 gene was determined using luciferase reporter assay, chromatin immunoprecipitation and DNA-affinity precipitation assays. Connectivity Map analysis was used to screen anticancer drugs. RESULTS: LncRNA PVT1 and STAT5B enhance the expression of each other and promote the malignant phenotypes in BC, including cell viability and invasion. lncRNA PVT1 stabilizes STAT5B by decreasing ubiquitination, enhances STAT5B phosphorylation, and promotes the translocation to the nucleus of STAT5B to trigger further carcinogenesis activities. In the nucleus, STAT5B activates the transcription of lncRNA PVT1 by binding directly to its promoter region, leading to a positive feedback. Tanespimycin effectively abated the oncogenic effect. CONCLUSIONS: We first identified the lncRNA PVT1/STAT5B positive feedback loop for bladder carcinogenesis, and found a potentially effective drug for BC.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Retroalimentação , Regulação Neoplásica da Expressão Gênica/genética , Hibridização in Situ Fluorescente , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética
14.
Br J Haematol ; 203(2): 282-287, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37519213

RESUMO

Donor-derived haematological neoplasms, in which recipients present with haematological malignancies that have evolved from transplant donor stem cells, have previously been described for myelodysplastic syndrome, myeloproliferative neoplasms, acute myeloid leukaemia and less often, leukaemias of lymphoid origin. Here we describe a rare and complex case of donor-derived T-cell acute lymphoblastic leukaemia with a relatively short disease latency of less than 4 years. Through genomic and in vitro analyses, we identified novel mutations in NOTCH1 as well as a novel activating mutation in STAT5B; the latter targetable with the clinically available drugs, venetoclax and ruxolitinib.

15.
Leuk Lymphoma ; 64(9): 1536-1544, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330635

RESUMO

LGLL is a rare and chronic lymphoproliferative disorder including T-LGLL and CLPD-NK. Here, we investigated the genomic profiles of LGLL with a focus on STAT3 and STAT5B mutations in a cohort of 49 patients (41 T-LGLL, 8 CLPD-NK). Our study indicated that STAT3 was identified in 38.8% (19/49) of all patients, while STAT5B occurred in only 8.2% (4/49) of patients. We found that STAT3 mutations were associated with lower ANC in T-LGLL patients. The average number of pathogenic/likely pathogenic mutations in STAT3/STAT5B-mutated patients was significantly higher than that in WT patients (1.78 ± 1.17 vs 0.65 ± 1.36, p = 0.0032). Additionally, TET2-only mutated T-LGLL (n = 5) had a significant reduction in platelet values compared with the WT (n = 16) or STAT3-only mutated T-LGLL (n = 12) (p < 0.05). In conclusion, we compared the somatic mutational landscape between STAT3/STAT5B WT and mutated patients and correlate with their distinct clinical characteristics.


Assuntos
Leucemia Linfocítica Granular Grande , Humanos , Leucemia Linfocítica Granular Grande/diagnóstico , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/patologia , Células Matadoras Naturais/patologia , Mutação , Genômica
16.
Metabolism ; 144: 155589, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37182789

RESUMO

BACKGROUND: Evidence is accumulating that growth hormone (GH) protects against the development of steatosis and progression of non-alcoholic fatty liver disease (NAFLD). GH may control steatosis indirectly by altering systemic insulin sensitivity and substrate delivery to the liver and/or by the direct actions of GH on hepatocyte function. APPROACH: To better define the hepatocyte-specific role of GH receptor (GHR) signaling on regulating steatosis, we used a mouse model with adult-onset, hepatocyte-specific GHR knockdown (aHepGHRkd). To prevent the reduction in circulating insulin-like growth factor 1 (IGF1) and the subsequent increase in GH observed after aHepGHRkd, subsets of aHepGHRkd mice were treated with adeno-associated viral vectors (AAV) driving hepatocyte-specific expression of IGF1 or a constitutively active form of STAT5b (STAT5bCA). The impact of hepatocyte-specific modulation of GHR, IGF1 and STAT5b on carbohydrate and lipid metabolism was studied across multiple nutritional states and in the context of hyperinsulinemic:euglycemic clamps. RESULTS: Chow-fed male aHepGHRkd mice developed steatosis associated with an increase in hepatic glucokinase (GCK) and ketohexokinase (KHK) expression and de novo lipogenesis (DNL) rate, in the post-absorptive state and in response to refeeding after an overnight fast. The aHepGHRkd-associated increase in hepatic KHK, but not GCK and steatosis, was dependent on hepatocyte expression of carbohydrate response element binding protein (ChREBP), in re-fed mice. Interestingly, under clamp conditions, aHepGHRkd also increased the rate of DNL and expression of GCK and KHK, but impaired insulin-mediated suppression of hepatic glucose production, without altering plasma NEFA levels. These effects were normalized with AAV-mediated hepatocyte expression of IGF1 or STAT5bCA. Comparison of the impact of AAV-mediated hepatocyte IGF1 versus STAT5bCA in aHepGHRkd mice across multiple nutritional states, indicated the restorative actions of IGF1 are indirect, by improving systemic insulin sensitivity, independent of changes in the liver transcriptome. In contrast, the actions of STAT5b are due to the combined effects of raising IGF1 and direct alterations in the hepatocyte gene program that may involve suppression of BCL6 and FOXO1 activity. However, the direct and IGF1-dependent actions of STAT5b cannot fully account for enhanced GCK activity and lipogenic gene expression observed after aHepGHRkd, suggesting other GHR-mediated signals are involved. CONCLUSION: These studies demonstrate hepatocyte GHR-signaling controls hepatic glycolysis, DNL, steatosis and hepatic insulin sensitivity indirectly (via IGF1) and directly (via STAT5b). The relative contribution of these indirect and direct actions of GH on hepatocytes is modified by insulin and nutrient availability. These results improve our understanding of the physiologic actions of GH on regulating adult metabolism to protect against NAFLD progression.


Assuntos
Hormônio do Crescimento Humano , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Lipogênese/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Hormônio do Crescimento/metabolismo , Insulina/metabolismo , Glicólise , Glucose/metabolismo , Hormônio do Crescimento Humano/metabolismo
17.
Childs Nerv Syst ; 39(8): 2071-2077, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37243811

RESUMO

PURPOSE: STAT proteins play a key role in several cellular functions related to cell development, differentiation, proliferation, and survival. Persistent STAT activation due to somatic STAT5bN642H gain-of-function mutation is a rare mechanism of STAT dysregulation that results in hypereosinophilia, frequent infections, leukemias, and pulmonary diseases. Herein, we describe a case of a child with a rare early onset STAT5b gain-of-function disease treated with targeted JAK inhibition who developed a cranial Mycobacterium avium osteomyelitis. METHODS: A 3-year-old male with a known STAT5b gain-of-function mutation presented with a 10-day history of a firm, immobile, non-painful cranial mycobacterium mass with dural infiltration located anterior to the coronal suture. Stepwise management finalized with complete resection of the lesion with calvarial reconstruction. A case-based literature review was performed evaluating all patients with this mutation who developed cranial disease. RESULTS: The patient was symptom and lesion-free at 1 year since surgical resection and initiation of triple mycobacterial pharmacotherapy. Our literature review demonstrated the rarity of this disease, as well as other presentations of this disease in other patients. CONCLUSION: Patients with STAT5b gain-of-function mutations have attenuated Th1 responses and are treated with medications, such as JAK inhibitors, which further inhibit other STAT proteins that regulate immunity against rare infectious entities, such as mycobacterium. Our case highlights the importance of considering these rare infections in patients on JAK inhibitors and with STAT protein mutations. Possessing a clear mechanistic understanding of this genetic mutation, its downstream effect, and the consequences of treatment may enhance a physician's diagnostic and clinical management of similar patients in the future.


Assuntos
Inibidores de Janus Quinases , Mycobacterium , Osteomielite , Masculino , Humanos , Criança , Pré-Escolar , Mutação com Ganho de Função , Crânio/diagnóstico por imagem , Osteomielite/complicações , Osteomielite/genética
19.
J Biol Chem ; 299(5): 104703, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059181

RESUMO

The conversion of signal transducer and activator of transcription (STAT) proteins from latent to active transcription factors is central to cytokine signaling. Triggered by their signal-induced tyrosine phosphorylation, it is the assembly of a range of cytokine-specific STAT homo- and heterodimers that marks a key step in the transition of hitherto latent proteins to transcription activators. In contrast, the constitutive self-assembly of latent STATs and how it relates to the functioning of activated STATs is understood less well. To provide a more complete picture, we developed a co-localization-based assay and tested all 28 possible combinations of the seven unphosphorylated STAT (U-STAT) proteins in living cells. We identified five U-STAT homodimers-STAT1, STAT3, STAT4, STAT5A, and STAT5B-and two heterodimers-STAT1:STAT2 and STAT5A:STAT5B-and performed semi-quantitative assessments of the forces and characterizations of binding interfaces that support them. One STAT protein-STAT6-was found to be monomeric. This comprehensive analysis of latent STAT self-assembly lays bare considerable structural and functional diversity in the ways that link STAT dimerization before and after activation.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição STAT , Transativadores , Citocinas/metabolismo , Fosforilação , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT4/genética , Fator de Transcrição STAT4/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transativadores/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Multimerização Proteica
20.
Cancer Genomics Proteomics ; 20(2): 195-202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36870690

RESUMO

BACKGROUND/AIM: Glioblastoma is the most common and aggressive malignant brain tumor in adults, and glioblastoma stem cells (GSCs) contribute to treatment resistance and recurrence. Inhibition of Stat5b in GSCs suppresses cell proliferation and induces apoptosis. Herein, we investigated the mechanisms of growth inhibition by Stat5b knockdown (KD) in GSCs. MATERIALS AND METHODS: GSCs were established from a murine glioblastoma model in which shRNA-p53 and EGFR/Ras mutants were induced in vivo using a Sleeping Beauty transposon system. Microarray analyses were performed on Stat5b-KD GSCs to identify genes that are differentially expressed downstream of Stat5b. RT-qPCR and western blot analyses were used to determine Myb levels in GSCs. Myb-overexpressing GSCs were induced by electroporation. Proliferation and apoptosis were evaluated by a trypan blue dye exclusion test and annexin-V staining, respectively. RESULTS: MYB, which is involved in the Wnt pathway, was identified as a novel gene whose expression was down-regulated by Stat5b-KD in GSCs. Both MYB mRNA and protein levels were down-regulated by Stat5b-KD. Overexpression of Myb rescued cell proliferation that was suppressed by Stat5b-KD. Furthermore, Stat5b-KD-induced apoptosis in GSCs was significantly inhibited by Myb overexpression. CONCLUSION: Down-regulation of Myb mediates Stat5b-KD-induced inhibition of proliferation and induction of apoptosis in GSCs. This may represent a promising novel therapeutic strategy against glioblastoma.


Assuntos
Glioblastoma , Adulto , Humanos , Animais , Camundongos , Encéfalo , Apoptose , Proliferação de Células , Células-Tronco , Fator de Transcrição STAT5
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...